### **EUROPEAN OPHTALMIC PATHOLOGY SOCIETY**

Valencia, 25-28.5.2022

Member's name: Alexandre P. Moulin, MD

Eye Pathology Laboratory Jules-Gonin Eye Hospital

Av. de France 15, 1004 Lausanne,

Switzerland

Tel: +4121 6268541

Email: alexandre.moulin@fa2.ch

Case Number: 895-21, 922-21

Material submitted: 1 histology H&E slide

Title of Case Presentation:

ENTK lymphoma, nasal type of the eyelid and orbit in a 47 yo female.

#### **CLINICAL HISTORY:**

A 47 yo female noticed a progressive swelling and redness of her left superior eyelid, initially unsuccessfully treated as a chalazion. The persistence of swelling prompted further investigations with an MRI demonstrating an orbital infiltrate predominating in the superolateral orbit with involvement of the lachrymal gland leading to a differential diagnosis of a pseudotumor.

Ophthalmological examination revealed no decrease in VA. There was a limitation of left eye elevation and abduction. Slit lamp examination showed a chemosis. There was no intraocular inflammation and fundus were normal bilaterally. Orbital biopsies were performed and initially sent to a private laboratory that established an initial diagnosis of vasculitis. The material was then sent to our laboratory. Systemic investigations for sarcoidosis, Lyme disease, Weggener granulomatosis, Rhumatoid arthritis, COVID, IgG4 were all negative.

Higher doses of steroids only briefly amended the symptomatology that progressively worsened with proptosis, increased upper and lower eyelid swelling, redness and painful eye movements. MRI of the orbit demonstrated an increase in the diffuse orbital infiltrate that involved all the ocular muscles, and partially compressed the optic nerve sheath. As the clinical situation worsened despite 4 weeks of high dose corticosteroids, a conjunctival biopsy was further performed.

#### **OCULAR PATHOLOGY:**

### Macroscopy:

### Initial eyelid, orbital and conjunctival biopsies:

2 skin fragments measuring  $0.7 \times 0.1 \times 0.1$  cm and  $1.3 \times 0.2 \times 0.2$  cm, 6 fibro-adipose fragments measuring  $0.7 \times 0.2 \times 0.2$  cm,  $0.9 \times 0.2 \times 0.1$  cm,  $0.5 \times 0.3 \times 0.1$  cm,  $0.6 \times 0.1 \times 0.2$  cm,  $0.4 \times 0.1 \times 0.1$  cm,  $0.5 \times 0.1 \times 0.3$  mm and 2 small fragments with a maximum diameter of 0.2 cm.

# Secondary conjunctival biopsies:

2 small conjunctival fragments measuring 5.5 x 1.7 x 1.6 mm and 6 x 2 x 1 mm.

# Microscopy:

# Initial biopsies:

In all the fragments, there is a lymphocytic infiltrate with a striking perivascular predominance. A noticeable infiltration of the adipose tissue and areas of liponecrosis can also be observed. Lymphocytes are circumferentially surrounding adipocytes. There is a majority of small lymphocytes, but in some areas, cells with larger, irregular hyperchromatic nuclei with prominent nucleoli can be can be identified within the adipose tissue. There are no eosinophils, no neutrophils, no granulomas, no necrotizing vasculitis. In the skin fragment, no epidermotropism can be seen.

# Secondary conjunctival biopsies:

In the oedematous stroma, there is a diffuse lymphoid infiltrate containing intermediate to large atypical cells with irregular nuclei with a perivascular tropism. The proportion of these cells is much higher than in the orbital biopsies. Small lymphocytes, histiocytes and plasmocytes are also present. Necrosis is absent.

## Immunohistochemistry and in situ hybridization:

### **Initial biopsies:**

There was a majority of T CD3+ cells over B CD20+. However, in some areas, notably in the adipose tissue and around the wall of some vessels, local accumulation of B cells could be seen. Among T cells, there was a predominance of TCD8 + over T CD4+. CD2 was preserved while CD5 and CD7 were lost. Cytotoxic markers (Granzyme, TIA1, perforin) were mostly expressed by small lymphocytes. Larger CD56+, CD57+ cells could be observed as well as numerous CD68+ macrophages. The CD56+ cells were also expressing cytotoxic markers. There was no expression of LMP-1 and EBNA2. EBV could be identified by in situ hybridization both in T CD3+ and more rarely in CD20+ cells. Rare CD30+ could also be observed. Secondary conjunctival biopsies:

The large cells expressed CD56, CD3, CD2, and cytotoxic markers, but not CD5 and CD7. There was a partial expression of CD8 and CD4. Smaller B CD20+ could be found around the vessels. The proliferation index was around 70% in the areas of large atypical cells. In situ hybridization clearly demonstrated EBV within T cells. There was no expression of LMP1.

### **Clonality Analyis:**

Multiplex PCR did not show any monoclonal rearrangement for IGH, IGK, IGΛ, TRG and TRB genes.

### NGS:

A probably damaging *TET2*<sup>Y1902N</sup> mutation as well as a probably damaging mutation in exon 9 of *BCOR* (c.4071+1G>A) were identified.

#### Diagnosis:

Extranodal Natural Killer/T (ENTK) Cell Lymphoma, nasal type of the right orbit and eyelid.

### **DISCUSSION:**

Extranodal Natural killer/T cell lymphoma, nasal type are angiodestructive aggressive lymphomas. These lymphomas, associated with EBV virus, predominate in Asia and in South America, while they are rare in Western countries <sup>1-4</sup>. The median age at presentation is 52 yo with a male predominance (2:1)¹. These lymphomas usually occur in the nasopharyngeal area (>70%) and extranasal location most commonly include skin (10-26%), spleen and kidney, testes, GI tract, uterus, lungs and salivary glands. Primary localization within the orbit with primary orbital or ocular symptoms as illustrated in our case seems to be rare with only 34 previously reported cases to date<sup>5-20</sup>.

Eyelid swelling was the commonest presentation  $(27/34, 79,4\%)^{5,7\cdot10,13,15,17,18,20,21}$ , followed by proptosis  $(32.3\%)^{6,7,9,13}$ , ptosis  $(29.4\%)^{13}$ , decreased visual acuity  $(20.5\%)^{6,7,14,17,19}$ , diplopia  $(17.6\%)^{13,16}$ , ocular pain  $(11,8\%)^{13,15}$ , and epiphora  $(5.9\%)^{13}$ . Decreased visual acuity was found in patents with uveitis (anterior uveitis  $^{6,17}$ , vitritis  $^{12,14}$ ) or papilloedema<sup>6</sup>, but also in patients with decreased ocular motility  $^{5,9,19}$  probably reflecting the extent of orbital extension by the lymphoma possibly altering optic nerve function.

From a histopathlogical perspective, the tissues are infiltrated by medium to large cells that can be admixed with small cells as seen in our situation. The cells have usually scant cytoplasm, irregular and folded nuclei with heterogeneous chromatin. Angiotropism is characteristic, but not essential for diagnosis. It can be associated with vessels fibrinoid necrosis that was not observed in our situation. The atypical cells usually express a NK phenotype with CD56, CD2, cytoplasmic CD3 (not membranous CD3), as well as cytotoxic markers (granzyme, perforin, TIA-1) usually without T cell receptor<sup>22</sup>. CD4, CD8, CD7 and rarely CD30 can also be found. The cells of origin is believed of NK lineage, but TCR rearrangements have occasionally been found, suggesting also a  $\gamma\delta$ -T cell origin<sup>23</sup>.

The diagnosis of ENTK lymphoma of the orbit was not easy in our situation due to difficulties to precisely determine if EBV was localized in B cells or in T cells: there were indeed areas of accumulation of B cells with presence of EBV within B cells leading to the suspicion of a lymphomatoid granulomatosis. Numerous T cells containing EBV could only be demonstrated in an additional conjunctival biopsy. Our case also illustrate the difficulties to reinterpret and challenge an initial diagnosis established elsewhere.

EBV DNA and oncoproteins (EBV Nuclear Factor, EBNA1, as well Latent Membrane Protein 1, LMP-1) have been detected in ENTK lymphoma <sup>24</sup>. While EBV is ubiquitous, the higher incidence of ENTK lymphoma in Asia and in some areas of Central and South America is not clear. Associations with genetic predisposition (HLA A29)<sup>25</sup>, environmental factors (pesticides, herbicides) as well as specific EBV strains with mutations in LMP-1 TCD8 epitope have been identified <sup>23</sup>. In chronic active EBV infections (CAEBV), EBV has been found in B cells in Western countries, while in NK/T cells in Eastern Asia<sup>26</sup>. While CD21 has been linked to the entry of EBV within B cells, the ligand of EBV in NK/T cells is not known and it has been hypothesized that EBV might infect a CD21 expressing progenitor cell that might subsequently differentiate into NK or T cells<sup>25</sup>. EBV viral copy number in blood has been correlated with disease severity and is an independent prognostic factor for survival<sup>27</sup>. LMP-1 is believed to be have an oncogenic drive in ENTK lymphoma through apoptosis inhibition, cycle cell progression, migration and invasion<sup>28</sup>. LMP-1 notably increases MYC, survivin and PD-L1 expression through NF-κB, MAPK, JAK/STAT and PI3k/mTOR signalling in EBV positive ENTKL cell lines<sup>29-32</sup>.

The genomic landscape of ENTK lymphoma revealed frequent inactivating mutations (~50%) in *DEAD-BOX-3X* (*DDX3X*)<sup>33</sup>, a RNA helicase. *DDX3X*, located on X chromosome, is a tumor suppressor gene and in vitro experiment with *DDX3X* mutants revealed increased MAP kinase and NF-κB signalling<sup>33</sup>. Mutations in *BCOR*, as identified in our case, have been previously identified in 13%-32% of the cases <sup>34-36</sup>. The presence of inactivating mutations in *BCOR* as well as loss of the corresponding allele suggest that *BCOR* might be a tumor suppressor gene in ENTK lymphoma<sup>35</sup>. BCOR is a co-repressor of BCL6, the master regulator of germinal center. BCL6 and BCOR are thought to cooperate to silence target genes, notably NOTCH transcription and in vitro experiments with NOTCH inhibitors induced growth arrest in ENTK cell lines<sup>37</sup>. Oncogenic *STAT3* mutations, usually occurring in a mutually exclusive way with *DDX3X* and *BCOR* mutations, have been reported in 23-26% of the cases and associated with an increased activity of the JAK/STAT pathway<sup>34</sup>.

The outcome of patients with primary orbital ENTK lymphoma has not been favourable with a median overall survival of 5.5 months (SEM 1.6)<sup>5-7,9-12,15,18,19</sup>. As ENTK lymphoma express P-glycoprotein involved in multidrug resistance<sup>38</sup>(notably resistance to anthracyclines included in CHOP containing doxorubicin), the worst survival (3 months) has been observed when CHOP regimen has been applied<sup>5</sup>. Extranasal localization is associated with a worse outcome<sup>1</sup> and in a Korean study, the 5 year OS was 13,3% in primary orbital ENTK lymphoma versus 26.4% in ENTK secondarily involving the orbit<sup>13</sup>. The optimal treatment approach combines non anthracycline based chemotherapy and radiotherapy that have proven to be superior to chemotherapy alone (complete response rate 78% in combined approach versus 49% with chemotherapy only, 2 year OS 90% versus 49%)<sup>39</sup>. In our situation, the patient achieved complete remission with an induction using a modified SMILE protocol (methotrexate, leucovorin, ifosfamide, mesna, dexamethasone, etoposide, pegaspargase), followed by radiotherapy (39.6 Gy in both orbits) and cisplatin chemotherapy. Complete remission with a 2 year OS has also previously been observed in 28 yo female with a primary orbital ENTK lymphoma treated with the SMILE protocol and radiotherapy<sup>16</sup>.

### **REFERENCES**

- 1. Au WY, Weisenburger DD, Intragumtornchai T, et al. Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the International Peripheral T-Cell Lymphoma Project. Blood 2009;113(17):3931-7. DOI: 10.1182/blood-2008-10-185256.
- 2. Barrionuevo C, Zaharia M, Martinez MT, et al. Extranodal NK/T-cell lymphoma, nasal type: study of clinicopathologic and prognosis factors in a series of 78 cases from Peru. Appl Immunohistochem Mol Morphol 2007;15(1):38-44. DOI: 10.1097/01.pai.0000205062.27174.56.
- 3. Jaffe ES, Chan JK, Su IJ, et al. Report of the Workshop on Nasal and Related Extranodal Angiocentric T/Natural Killer Cell Lymphomas. Definitions, differential diagnosis, and epidemiology. Am J Surg Pathol 1996;20(1):103-11. DOI: 10.1097/00000478-199601000-00012.

- Laurini JA, Perry AM, Boilesen E, et al. Classification of non-Hodgkin lymphoma in Central and South America: a review of 1028 cases. Blood 2012;120(24):4795-801. DOI: 10.1182/blood-2012-07-440073.
- 5. Amri GE, Zalagh M, Benariba F. [Extra-nodal NK/T-cell lymphoma, nasal type presenting as orbital cellulitis]. Pan Afr Med J 2018;31:8. DOI: 10.11604/pamj.2018.31.8.16221.
- 6. Woog JJ, Kim YD, Yeatts RP, et al. Natural killer/T-cell lymphoma with ocular and adnexal involvement. Ophthalmology 2006;113(1):140-7. DOI: 10.1016/j.ophtha.2005.09.036.
- 7. Coupland SE, Foss HD, Assaf C, et al. T-cell and T/natural killer-cell lymphomas involving ocular and ocular adnexal tissues: a clinicopathologic, immunohistochemical, and molecular study of seven cases. Ophthalmology 1999;106(11):2109-20. DOI: 10.1016/S0161-6420(99)90492-X.
- 8. Charton J, Witherspoon SR, Itani K, Jones FR, Marple B, Morse B. Natural killer/T-cell lymphoma masquerading as orbital cellulitis. Ophthalmic Plast Reconstr Surg 2008;24(2):143-5. DOI: 10.1097/IOP.0b013e3181659867.
- 9. Ely A, Evans J, Sundstrom JM, Malysz J, Specht CS, Wilkinson M. Orbital involvement in extranodal natural killer T cell lymphoma: an atypical case presentation and review of the literature. Orbit 2012;31(4):267-9. DOI: 10.3109/01676830.2011.605506.
- 10. Kawakami K, Ito R, Tono Y, et al. Orbital inflammatory lesion as an initial manifestation of systemic nasal type NK/T-cell lymphoma. J Clin Exp Hematop 2012;52(2):137-9. DOI: 10.3960/jslrt.52.137.
- 11. Kiratli H, Uzun S, Yesilirmak A, Ayhan AS, Soylemezoglu F. Conjunctival extranodal natural killer/T-cell lymphoma, nasal type. Cornea 2015;34(6):710-2. DOI: 10.1097/ICO.000000000000420.
- 12. Kuwabara H, Tsuji M, Yoshii Y, et al. Nasal-type NK/T cell lymphoma of the orbit with distant metastases. Hum Pathol 2003;34(3):290-2. DOI: 10.1053/hupa.2003.33.
- 13. Lee GI, Kim YD, Young SM, Shin S, Woo KI. Clinical characteristics and treatment outcomes of natural killer/T-cell lymphoma involving the ocular adnexa. Br J Ophthalmol 2019;103(2):269-273. DOI: 10.1136/bjophthalmol-2017-311704.
- 14. Lyons LJ, Vrcek I, Somogyi M, et al. Natural killer/T-cell lymphoma invading the orbit and globe. Proc (Bayl Univ Med Cent) 2017;30(4):447-449. DOI: 10.1080/08998280.2017.11930224.
- 15. Marchino T, Ibanez N, Prieto S, et al. An aggressive primary orbital natural killer/T-cell lymphoma case: poor response to chemotherapy. Ophthalmic Plast Reconstr Surg 2014;30(5):e131-4. DOI: 10.1097/IOP.0b013e3182a65026.
- 16. Meel R, Dhiman R, Wadhwani M, Kashyap S, Sharma S, Gogia A. Isolated Extranodal Natural Killer T-Cell Lymphoma of the Orbit in a Young Patient: Complete Regression with the SMILE Regimen. Ocul Oncol Pathol 2017;3(1):45-48. DOI: 10.1159/000449227.
- 17. Okada A, Harada Y, Inoue T, Okikawa Y, Ichinohe T, Kiuchi Y. A case of primary extranodal natural killer/T-cell lymphoma in the orbit and intraocular tissues with cerebrospinal fluid involvement. Am J Ophthalmol Case Rep 2018;11:37-40. DOI: 10.1016/j.ajoc.2018.05.002.
- 18. Termote K, Dierickx D, Verhoef G, Jorissen M, Tousseyn T, Mombaerts I. Series of extranodal natural killer/T-cell lymphoma, nasal type, with periorbital involvement. Orbit 2014;33(4):245-51. DOI: 10.3109/01676830.2014.902478.
- 19. Yang Y, Luo Q, He W, Tang L. Primary ocular natural killer/T-cell lymphomas: clinicopathologic features and diagnosis. Ophthalmologica 2007;221(3):173-9. DOI: 10.1159/000099297.
- 20. Zhang J, Chen H, Lin W, Wu Z. Aggressive natural killer/T-cell lymphoma masquerading as acute orbital hemorrhage: a case report. Int J Clin Exp Pathol 2020;13(5):1081-1085. (https://www.ncbi.nlm.nih.gov/pubmed/32509082).
- 21. Al Shawabkeh MA, Al Sulaiti M, Al Sa'ey H, Ganesan S. Nasal Type Extranodal Natural Killer/T (NK/T) Cell Lymphoma Presenting as Periorbital Cellulitis: A Case Report. Am J Case Rep 2016;17:934-938. DOI: 10.12659/ajcr.899922.
- 22. Kanavaros P, Lescs MC, Briere J, et al. Nasal T-cell lymphoma: a clinicopathologic entity associated with peculiar phenotype and with Epstein-Barr virus. Blood 1993;81(10):2688-95. (https://www.ncbi.nlm.nih.gov/pubmed/8387835).
- 23. Harabuchi Y, Takahara M, Kishibe K, Nagato T, Kumai T. Extranodal Natural Killer/T-Cell Lymphoma, Nasal Type: Basic Science and Clinical Progress. Front Pediatr 2019;7:141. DOI: 10.3389/fped.2019.00141.
- 24. Harabuchi Y, Takahara M, Kishibe K, Moriai S, Nagato T, Ishii H. Nasal natural killer (NK)/T-cell lymphoma: clinical, histological, virological, and genetic features. Int J Clin Oncol 2009;14(3):181-90. DOI: 10.1007/s10147-009-0882-7.
- Kimura H, Fujiwara S. Overview of EBV-Associated T/NK-Cell Lymphoproliferative Diseases. Front Pediatr 2018;6:417. DOI: 10.3389/fped.2018.00417.
- 26. Kimura H, Hoshino Y, Hara S, et al. Differences between T cell-type and natural killer cell-type chronic active Epstein-Barr virus infection. J Infect Dis 2005;191(4):531-9. DOI: 10.1086/427239.
- 27. Kim SJ, Yoon DH, Jaccard A, et al. A prognostic index for natural killer cell lymphoma after non-anthracycline-based treatment: a multicentre, retrospective analysis. Lancet Oncol 2016;17(3):389-400. DOI: 10.1016/S1470-2045(15)00533-1.
- 28. Cai Q, Cai J, Fang Y, Young KH. Epstein-Barr Virus-Positive Natural Killer/T-Cell Lymphoma. Front Oncol 2019;9:386. DOI: 10.3389/fonc.2019.00386.
- 29. Sun L, Zhao Y, Shi H, Ma C, Wei L. LMP-1 induces survivin expression to inhibit cell apoptosis through the NF-kappaB and PI3K/Akt signaling pathways in nasal NK/T-cell lymphoma. Oncol Rep 2015;33(5):2253-60. DOI: 10.3892/or.2015.3847.
- 30. Sun L, Zhao Y, Shi H, Ma C, Wei L. LMP1 promotes nasal NK/T-cell lymphoma cell function by eIF4E via NF-kappaB pathway. Oncol Rep 2015;34(6):3264-71. DOI: 10.3892/or.2015.4305.
- 31. Bi XW, Wang H, Zhang WW, et al. PD-L1 is upregulated by EBV-driven LMP1 through NF-kappaB pathway and correlates with poor prognosis in natural killer/T-cell lymphoma. J Hematol Oncol 2016;9(1):109. DOI: 10.1186/s13045-016-0341-7.
- 32. Song TL, Nairismagi ML, Laurensia Y, et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 2018;132(11):1146-1158. DOI: 10.1182/blood-2018-01-829424.
- 33. Jiang L, Gu ZH, Yan ZX, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet 2015;47(9):1061-6. DOI: 10.1038/ng.3358.
- 34. Lee S, Park HY, Kang SY, et al. Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget 2015;6(19):17764-76. DOI: 10.18632/oncotarget.3776.
- 35. Dobashi A, Tsuyama N, Asaka R, et al. Frequent BCOR aberrations in extranodal NK/T-Cell lymphoma, nasal type. Genes Chromosomes Cancer 2016;55(5):460-71. DOI: 10.1002/gcc.22348.
- 36. Montes-Mojarro IA, Chen BJ, Ramirez-Ibarguen AF, et al. Mutational profile and EBV strains of extranodal NK/T-cell lymphoma, nasal type in Latin America. Mod Pathol 2020;33(5):781-791. DOI: 10.1038/s41379-019-0415-5.
- 37. Iqbal J, Weisenburger DD, Chowdhury A, et al. Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic gammadelta T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro. Leukemia 2011;25(2):348-58. DOI: 10.1038/leu.2010.255.
- 38. Yamaguchi M, Kita K, Miwa H, et al. Frequent expression of P-glycoprotein/MDR1 by nasal T-cell lymphoma cells. Cancer 1995;76(11):2351-6. DOI: 10.1002/1097-0142(19951201)76:11<2351::aid-cncr2820761125>3.0.co;2-1.
- 39. Li YY, Feng LL, Niu SQ, et al. Radiotherapy improves survival in early stage extranodal natural killer/T cell lymphoma patients receiving asparaginase-based chemotherapy. Oncotarget 2017;8(7):11480-11488. DOI: 10.18632/oncotarget.14006.