EUROPEAN OPHTHALMIC PATHOLOGY SOCIETY

Case report

2022

Sandra LASSALLE

CHU de Nice, France

An uncommon conjunctival nevus: juvenile conjunctival nevus with balloon cell

differentiation

Clinical presentation

A 14 year old woman presented a pigmented conjunctival lesion, recently modified. It was

locally excised.

Histopathology

The conjunctival specimen showed a compound type nevus with nevus cells located within

both the epithelium and the substantia propria. There was a nested and confluent growth

pattern of melanocytes in the junctional component. We observed focus of pagetoid spread. In

the substantia propria many of the nevus cells had clear cytoplasm with centrally located

nuclei. There was no evidence of cellular atypia, or mitosis. Conjunctival cysts were present

in the subepithelial component. A lymphocytic host response was present in the substantia

propria.

The melan-A and HMB45 stains were positive within the nevus cells as well as the within the

clear cells located in the substantia propria

Diagnosis

Juvenile conjunctival compound nevus with balloon cell features

Discussion

In children and adolescents, rapidly growing conjunctival nevi can look very concerning

clinically and are often biopsied. Under the microscope, they also show concerning histologic

patterns. Juvenile conjunctival nevi often show confluent growth pattern in the junctional

component, absence of maturation with depth. In addition, a prominent inflammatory infiltrate

is present in about half of the lesions and may obscure the architecture of the nevus and

foster misleading impression of cytological atypia. Most juvenile conjunctival neviare

compound type. The presence of cysts helps one differentiate between conjunctival nevi and

melanoma as cysts are rarely seen in melanoma.

1

Balloon cell nevi are benign melanocytic tumors typically found in the choroid(Naumann et al. 1966; Yanoff & Zimmerman 1967) and skin and rarely in the conjunctiva or iris (Morcos et al. 2014). They represent histologic variants of the more common nevocellular nevi in which greater than 50% of nevus cells are large and foamy. They are most common in patient under age of 30, affecting male and female equally (Wolkow & Freitag 2019). Clinically, they are undistinguishable from more common nevi. Thompson et al. reported a total of 13 documented cases in literature of conjunctival balloon cell nevi, with only one being located in the caruncle(Thompson et al. 2015). The age at presentation ranges from 7 to 44 years. Balloon cell nevi are characterized histologically by nests of large cells that lack melanin pigment and have a clear or vacuolated cytoplasm with centrally located nuclei. The vacuolated cytoplasm may be the result of several different processes, including being filled with fat or undergoing lipomatoustransformation. The prevailing hypothesis is that the balloon cells are merely altered nevus cells with a defect in melanin synthesis. Ultrastructural examination shows the balloon cells are formed by vacuolization of melanocytes secondary to enlargement and disintegration of melanosomes(Kim et al. 2007). This finding suggests that apoptosis may be involved in the development of this lesion. The presence of balloon cells does not in itself indicate benignity as they have been found in malignant melanomas ofthe skin, conjunctive and in uveal melanomas(Margo 1988). The histologic differential diagnosis here is balloon cell melanoma. The morphologic characteristics of the cells, including mitotic activity and prominence of nucleoli, are helpful in distinguishing benign and malignant disease. Balloon cells in skin malignant melanoma simply represent a morphologic feature, not a specific subtype of melanoma. Balloon cell malignant melanomas of the skin did not affect metastatic potential, and the prognosis is similar to other types of cutaneous melanomas.

In literature, the bulbar conjunctiva is the most common location for balloon cell nevi, followed by the caruncle and palpebral conjunctiva.

Immunohistochemistry is very helpful in correctly establishing the diagnosis of balloon cell nevus since this entity will stain as ordinary nevi. Balloon cells stain positively for S-100 and melan-A.The balloon cells are weakly PAS, HMB-45 can be negative or weakly/focally positive(Jakobiec et al. 2009).

Bibliography

Jakobiec FA, K Colby, AM Bajart, SJ Saragas & A Moulin (2009): Immunohistochemical studies of atypical conjunctival melanocytic nevi. Arch Ophthalmol **127**: 970-980.

Kim YJ, YC Kim & HY Kang (2007): Is apoptosis involved in the development of balloon cell nevus? Suggestion from a case report. J Am Acad Dermatol **56**: 1069-1070.

- Margo CE (1988): Conjunctival melanoma with balloon cell transformation. Case report. Arch Ophthalmol **106**: 1653-1654.
- Morcos MW, A Odashiro, R Bazin, PR Pereira, A O'Meara & MN Burnier, Jr. (2014): Balloon cell nevus of the iris. Pathol Res Pract **210**: 1160-1163.
- Naumann G, M Yanoff & LE Zimmerman (1966): Histogenesis of malignant melanomas of the uvea. I. Histopathologic characteristics of nevi of the choroid and ciliary body. Arch Ophthalmol **76**: 784-796.
- Thompson JM, JA Bermudez-Magner, NH Barker, D Payne, B Meghpara & SR Dubovy (2015): Balloon cell nevi of the conjunctiva: Clinicopathologic correlation and literature review. Surv Ophthalmol **60**: 481-485.
- Wolkow N & SK Freitag (2019): Balloon Cell Nevus in a 13-Year-Old Girl: Clinical and Histopathologic Features. Ophthalmic Plast Reconstr Surg **35**: e125.
- Yanoff M & LE Zimmerman (1967): Histogenesis of malignant melanomas of the uvea. II. Relationship of uveal nevi to malignant melanomas. Cancer **20**: 493-507.